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INTRODUCTION

A unified computer model for predicting thermochemical erosion in gun barrels was first
described by Dunn et al. in 1995 (ref 1) using the following codes:

. Standard heat transfer modified by mass addition to boundary layer rocket

code modified for guns (MABL)

o Standard nonideal gas-wall thermochemical rocket code modified for guns
(CCET)

. Standard wall material ablation conduction erosion rocket code modified for guns
(MACE) '

Additionally, this gun barrel erosion model requires the standard interior ballistics gun code
(XNOVAKTC) (ref 2) results for input. Many ADPA Tri-Service sponsored gun erosion
meetings have implied a thermochemical erosion mechanism for various gun systems, and U.S.
Army experimental data support the existence of gun barrel oxidation (refs 3,4). Practical gun
barrel design should protect against the lower temperature thermochemical erosion and remain
below the higher temperature thermal erosion. Practical gun barrel erosion modeling should be
kept on-track by actual interior ballistics, boundary layer, thermochemical, and material analysis
systems data to the degree they are available. These models should evolve as patterns are
identified from multiple systems.

Identification of erosive combustion products by comparative modeling between
proposed and present propellant formulations or between a propellant formulation with and
without additives may benefit current U.S. Army/Navy programs that attempt to lower propellant
flame temperature and/or propellant erosion. This report attempts to quantitatively identify
erosive combustion products affecting the 0.005-inch high contraction (HC) chromium plated
A723 steel 120-mm M256/ambient temperature-conditioned M829A2 gun system for a single-
round firing scenario. The HC chromium plate, the subsurface A723 steel substrate at HC
chromium crack bases, and bare A723 steel are evaluated.

PROCEDURE

The initial modeling steps of erosive combustion products affecting the 0.005-inch HC
chromium plated A723 steel 120-mm M256/ambient temperature-conditioned M829A2 gun
system for a single-round firing scenario at 27 and 61 inches from the rear face of the tube (RFT)
included:



XNOVAKTC interior ballistics gun code for gas pressure, gas temperature,
and gas velocity core flow predictions (ref 2)

' MABL mass addition to boundary layer gun code for recovery enthalpy and

cold wall heat flux predictions (ref 1)

CCET gas-wall thermochemistry gun code for inert wall enthalpy, reacting
wall enthalpy, and ablation potential predictions (ref 1)

MACE material ablation conduction erosion gun‘code for wall temperature
profiles and wall erosion profiles (ref 1)

The final modeling steps for this analysis included:

MACE predictions of gas pressure and ablating wall temperature regions versus
time for surface HC chromium plate, surface A723, and subsurface A723 steel
substrate at HC chromium crack bases

CCET predictions of inert and reacting surface/interfacial A723 wall combustion
products using the respective gas pressure and wall temperature data mapped from
MACE predictions

A comparison of the CCET predictions of inert and reacting surface/interfacial
A723 wall combustion products to determine the erosive combustion products

Experimental data used for this gun system model calibration included:

Pressure gauge data for XNOVAKTC gas pressure
Radar for XNOVAKTC gas velocity

Kinetic rate data for CCET chemistry where gas-wall temperatures of
reaction were determined from M256 barrels that fired M829A2 rounds

Subsurface metallographic data for CCET chemistry
Surface borescope data for MACE ablation/conduction/erosion

Subsurface metallographic data for MACE ablation/conduction/erosion



RESULTS AND DISCUSSION

Figure 1 summarizes the XNOVAKTC interior ballistic and MABL boundary analyses of
ambient temperature-conditioned M829A2 rounds in the 120-mm M256 gun. These analyses
provide maximum values of gas pressure (P,,;), gas temperature (T,,,), gas velocity (V,,,),
recovery enthalpy (H,), and cold wall heat flux (Q,,) at axial positions 27 and 61 inches from the
RFT. Experimental P, and V,,; data at selected positions were used to calibrate the interior
ballistic analysis, which was the starting point of the overall analysis and subsequently provided

‘input to the boundary layer analysis.

Figure 2 summarizes the CCET thermochemical analysis for the gun system also at 27
and 61 inches from RFT. The analysis provides reacting wall enthalpy (H,,;).and ablation
potential (B,) for the HC chromium and Fe/A723 wall materials as a function of wall temperature
(T,..n)- Experimental kinetic rate function data were used to transform the chemical equilibrium
analysis into a partial chemical kinetic analysis. Experimental data were also collected from
M256 subsurface metallographic analysis. The HC chromium wall passivatingly oxides at
~2000°K, the maximum T, for this gun system is ~2000°K, and the ~2130°K HC chromium
melting point is not applicable. The Fe/A723 wall oxides in a more rapid expansive flaking
manner at ~1055°K, this oxide melts at ~1640°K, maximum T, for this gun system is ~1640°K,
and the ~1810°K Fe/A723 melting point is not applicable.

Figure 3 summarizes initial/final borescope data and estimated shot-by-shot interim
borescope data for A723 subsurface exposure through HC chromium plate cracks, again for the
gun system at 27 and 61 inches from RFT. Final experimental data were collected from some
‘cleaned 120-mm M256 tubes using a magnifying borescope with a calibrated scale to measure
average HC chromium platelet widths at the desired positions for a typical M256 retired low
round group (LRG) averaging a life of ~280 rounds and a typical M256 retired high round group
(HRG) averaging a life of ~510 rounds. Initial experimental data have been collected from many
cleaned 120-mm M256 tubes using a magnifying borescope with a calibrated scale to measure
~ average HC chromium platelet widths at the desired positions. Limited interim experimental
data between ten and fifty rounds have also been collected from some cleaned 120-mm M256
tubes with a similar round distribution using a magnifying borescope with a calibrated scale to
measure average HC chromium platelet widths at the desired positions. Percent A723 subsurface
exposure is calculated by

% A723 Subsurface Exposure = 100[(W, W) - (W,,. W,,. N.NJJ/(W,W,) (1)
where Wy, = total width circumferentially, Wy, = total width axially, Wmpc = mean platelet
width circumferentially adjusted for pitting, Wy,p, = mean platelet width axially adjusted for
pitting, N, = number of plates circumferentially, and N, = number of plates axially.
Experimental data were also collected from M256 subsurface metallographic analysis. HC
chromium outgassing of some nonmetallics and compression result in its shrinkage. Heat
checking provides the increase in A723 subsurface exposure. M256 tube life for the M829A2
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round appears to be inversely proportional to A723 subsurface exposure. HC chromium plate
has fine cracking and finite shrinkage when manufactured prior to firing.

- Figure 4 summarizes the MACE material ablation conduction erosion analysis for the gun
~system at 27 inches from RFT based on input from Figures 1 through 3 for A723 P, and
ablating wall temperature (T ;) regions (>1055°K) versus time (f) for surface A723, interfacial
LRG A723, and interfacial HRG A723. Although neither HC chromium nor A723 are melting,
gas wash thermochemically degrades both interfacial A723 at HC chromium heat-checked crack
bases and also fully exposed A723. Both interface groups have lower T, values due to 0.005-
inch HC chromium plate. The HC chromium T, curve is absent from this figure since it does
not ablate.

Figure 5 shows the CCET thermochemical analysis inert and reacting interfacial
chromium/A723 wall combustion products for the gun system's HRG at 27 inches from RFT
using the respective P, and T, data pairs mapped from Figure 4. Translating from the inert to
the reacting Fe/A723 wall case: a molar portion of the mostly iron wall becomes an equal molar
portion of iron oxide; carbon dioxide (or its precursors) appears to be an erosive combustion
product, since it decreases providing much of the wall oxygen; carbon monoxide (or its
precursors) appears to be an erosive combustion product, since it decreases providing some of the
wall oxygen; water (or its precursors) appears to be an erosive combustion product, since it
decreases providing some of the wall oxygen. This is compensated by methane, hydrogen, and
graphite (or their precursors), which appear to be nonerosive combustion products, since they
increase to adjust the C, H, O balance. Calculations show that it takes ~460 M829A2 HRG
rounds to gas wash onset at 27 inches from RFT.

Figure 6 shows the CCET thermochemical analysis inert and reacting interfacial
chromium/A723 wall combustion products for the gun system's LRG at 27 inches from RFT
using the respective P, and T, data pairs mapped from Figure 4. Translating from the inert to

“the reacting Fe/A723 wall case: a molar portion of the mostly iron wall becomes an equal molar
portion of iron oxide; carbon dioxide (or its precursors) appears to be an erosive combustion
product, since it decreases providing much of the wall oxygen; carbon monoxide (or its
precursors) appears to be an erosive combustion product, since it decreases providing some of the
wall oxygen; water (or its precursors) appears to be an erosive combustion product, since it
decreases providing some of this wall oxygen. This is compensated by methane, hydrogen, and
graphite (or their precursors), which appear to be nonerosive combustion products, since they
increase to adjust the C, H, O balance. Calculations show that it takes ~220 M829A2 LRG
rounds to gas wash onset at 27 inches from RFT.

Figure 7 shows the CCET thermochemical analysis inert and reacting fully exposed A723
wall (due to HC chromium loss) combustion products for the gun system at 27 inches from RFT
using the respective P, and T,,,, data pairs mapped from Figure 4. Translating from the inert to
the reacting Fe/A723 wall case: a molar portion of the mostly iron wall becomes an equal molar
portion of iron oxide; carbon dioxide (or its precursors) appears to be an erosive combustion
product, since it decreases providing much of the wall oxygen; water (or its precursors) appears
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to be an erosive combustion product, since it decreases providing some of the wall oxygen. This
is compensated by methane, carbon monoxide, hydrogen, and graphite (or their precursors),

- which appear to be nonerosive combustion products, since they increase to adjust the C, H, O
balance. Calculations show that it takes ~50 M829A2 rounds from gas wash onset to erosion
condemnation at 27 inches from RFT.

Figure 8 summarizes the MACE material ablation conduction erosion analysis for the gun
system at 61 inches from RFT based on input from Figures 1 through 3 for A723 P, and
ablating wall temperature (T,,,) regions (>1055°K) versus time () for surface A723, interfacial
LRG A723, and interfacial HRG A723. Although neither HC chromium nor A723 are melting,
gas wash thermochemically degrades both interfacial A723 at HC chromium heat-checked crack
bases and also fully exposed A723. In addition, metal oxide melting enhances ablation for the
fully exposed A723. Both interface groups have lower T, values due to 0.005-inch HC
chromium plate. The HC chromium T, curve is absent from this figure since it does not ablate.

Figure 9 shows the CCET thermochemical analysis inert and reacting interfacial
chromium/A723 wall combustion products for the gun system's HRG at 61 inches from RFT
using the respective P, and T,,, data pairs mapped from Figure 8. Translating from the inert to
the reacting Fe/A723 wall case: a molar portion of the mostly iron wall becomes an equal molar
portion of iron oxide; carbon dioxide (or its precursors) appears to be an erosive combustion
product, since it decreases providing much of the wall oxygen; carbon monoxide (or its
precursors) appears to be an erosive combustion product, since it decreases providing some of the
wall oxygen; water (or its precursors) appears to be an erosive combustion product, since it
decreases providing some of the wall oxygen. This is compensated by methane, hydrogen, and
graphite (or their precursors), which appear to be nonerosive combustion products, since they
increase to adjust the C, H, O balance. Calculations show that the number of M829A2 HRG
rounds to gas wash onset exceeds the gun’s life at 61 inches from RFT.

Figure 10 shows the CCET thermochemical analysis inert and reacting interfacial
chromium/A723 wall combustion products for the gun system's LRG at 61 inches from RFT
using the respective P, and T, data pairs mapped from Figure 8. Translating from the inert to
the reacting Fe/A723 wall case: a molar portion of the mostly iron wall becomes an equal molar
portion of iron oxide; carbon dioxide (or its precursors) appears to be an erosive combustion
product, since it decreases providing much of the wall oxygen; carbon monoxide (or its
precursors) appears to be an erosive combustion product, since it decreases providing some of the
wall oxygen; water (or its precursors) appears to be an erosive combustion product, since it
decreases providing some of the wall oxygen. This is compensated by methane, hydrogen, and
graphite (or their precursors), which appear to be nonerosive combustion products, since they
increase to adjust the C, H, O balance. Calculations show that the number of M829A2 LRG
rounds to gas wash onset exceeds the gun’s life at 61 inches from RFT.

Figure 11 shows the CCET thermochemical analysis inert and reacting fully exposed
A723 wall (due to HC chromium loss) combustion products for the gun system at 61 inches from
RFT using the respective P, and T, data pairs mapped from Figure 8. Translating from the
5



inert to the reacting Fe/A723 wall case: a molar portion of the mostly iron wall becomes an equal
molar portion of iron oxide; carbon dioxide (or its precursors) appears to be an erosive
combustion product, since it decreases providing about half of the wall oxygen; water (or its
precursors) appears to be an erosive combustion product, since it decreases providing about half
of the wall oxygen. This is compensated by methane, carbon monoxide, hydrogen, and graphite
(or their precursors), which appear to be nonerosive combustion products, since they increase to
adjust the C, H, O balance. Calculations show that it takes <50 M829A2 rounds from gas wash
onset to erosion condemnation at 61 inches from RFT. However, HC chromium removal is not
achieved thermochemically and requires mechanical removal.

Figures 5 through 7 and 9 through11 reveal that combustion products with less than 0.001
mole fraction are omitted. The transition from lower P,,-lower T,,, to peak P, -peak T, back
to lower P, -lower T, has a complex nonlinear effect on its mole fraction values for a given
combustion product species above the ~1055°K ablation threshold. These values are often vastly
different from those calculated by a nonideal gas adiabatic constant volume thermochemical
equilibrium analysis (mole fractions: CO =0.37, CO,=0.13, H,=0.10, H,0 =0.27, N, = 0.13),
since only the upper P,,.-T,,,, region is highlighted here and modified by kinetic rate functions.
When iron oxide is formed at the fully exposed A723 surface and this oxide melts, then a much
faster ablating action occurs. 'When sufficient iron oxide is formed at the HC chromium/A723
interface but fails to melt, iron oxide occupies a larger volume than the original iron and pushes
up the chromium platelet from all four sides. Eventually a planar crack propagates across the
interface and the HC chromium platelet spalls. If iron oxide is formed at the HC
chromium/A723 interface and this oxide melts, then a much faster spalling action occurs.

Identification of erosive combustion products by comparative modeling between
proposed and present propellant formulations or between a propellant formulation with and
~ without additives may benefit current U.S. Army/Navy programs that attempt to lower propellant
flame temperature and/or propellant erosion. Carbon dioxide, water, and carbon monoxide are
the identified erosive combustion products for this gun system. For interfacial Fe/A723 at 27
and 61 inches from RFT, nearly similar combustion products, coupled with the area 27 inches
from RFT mapping higher ablating P,-T,,,, pairs from Figure 2, result in an order of magnitude
more interfacial erosion. For fully exposed Fe/A723 at 27 and 61 inches from RFT, the area 61
inches from RFT has slightly less oxidizing combustion products that are offset by it mapping
higher ablating P_,.-T,,, pairs from Figure 2, resulting in more than twice the surface erosion.

gas
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TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

NO. OF
COPIES

CHIEF, DEVELOPMENT ENGINEERING DIVISION
ATTN: AMSTA-AR-CCB-DA
-DB
-DC
-DD
-DE

bt ek ek e b

CHIEF, ENGINEERING DIVISION
ATTN: AMSTA-AR-CCB-E

-EA

-EB

-EC

[P N W vy

CHIEF, TECHNOLOGY DIVISION
ATTN: AMSTA-AR-CCB-T

-TA

-TB

-TC

—_—— e N

TECHNICAL LIBRARY
ATTN: AMSTA-AR-CCB-O 5

TECHNICAL PUBLICATIONS & EDITING SECTION
ATTN: AMSTA-AR-CCB-O 3

OPERATIONS DIRECTORATE
ATTN: SIOWV-ODP-P 1

DIRECTOR, PROCUREMENT & CONTRACTING DIRECTORATE
ATTN: SIOWV-PP 1

DIRECTOR, PRODUCT ASSURANCE & TEST DIRECTORATE
ATTN: SIOWV-QA 1

NOTE: PLEASE NOTIFY DIRECTOR, BENET LABORATORIES, ATTN: AMSTA-AR-CCB-O OF ADDRESS CHANGES.




TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

ASST SEC OF THE ARMY
RESEARCH AND DEVELOPMENT
ATTN: DEPT FOR SCI AND TECH
THE PENTAGON

WASHINGTON, D.C. 20310-0103

DEFENSE TECHNICAL INFO CENTER
ATTN: DTIC-OCP (ACQUISITIONS)
8725 JOHN J. KINGMAN ROAD

STE 0944

FT. BELVOIR, VA 22060-6218

COMMANDER

U.S. ARMY ARDEC

ATTN: AMSTA-AR-AEE, BLDG. 3022
AMSTA-AR-AES, BLDG. 321
AMSTA-AR-AET-O, BLDG. 183
AMSTA-AR-FSA, BLDG. 354
AMSTA-AR-FSM-E
AMSTA-AR-FSS-D, BLDG. 94
AMSTA-AR-IMC, BLDG. 59

PICATINNY ARSENAL, NJ 07806-5000

DIRECTOR

U.S. ARMY RESEARCH LABORATORY

ATTN: AMSRL-DD-T, BLDG. 305

ABERDEEN PROVING GROUND, MD
21005-5066

DIRECTOR

U.S. ARMY RESEARCH LABORATORY

ATTN: AMSRL-WT-PD (DR. B. BURNS)

ABERDEEN PROVING GROUND, MD
21005-5066

DIRECTOR

NO. OF
COPIES

DN = b e e e

U.S. MATERIEL SYSTEMS ANALYSIS ACTV

ATTN: AMXSY-MP
ABERDEEN PROVING GROUND, MD
21005-5071

COMMANDER

ROCK ISLAND ARSENAL
ATTN: SMCRI-SEM

ROCK ISLAND, IL 61299-5001

MIAC/CINDAS

PURDUE UNIVERSITY

2595 YEAGER ROAD

WEST LAFAYETTE, IN 47906-1398

COMMANDER

NO. OF
COPIES

U.S. ARMY TANK-AUTMV R&D COMMAND

ATTN: AMSTA-DDL (TECH LIBRARY)
WARREN, MI 48397-5000

COMMANDER

U.S. MILITARY ACADEMY

ATTN: DEPARTMENT OF MECHANICS
WEST POINT, NY 10966-1792

U.S. ARMY MISSILE COMMAND

REDSTONE SCIENTIFIC INFO CENTER

ATTN: AMSMI-RD-CS-R/DOCUMENTS
BLDG. 4484

REDSTONE ARSENAL, AL 35898-5241

COMMANDER

1

1

2

U.S. ARMY FOREIGN SCI & TECH CENTER

ATTN: DRXST-SD
220 7TH STREET, N.E.
CHARLOTTESVILLE, VA 22901

COMMANDER

U.S. ARMY LABCOM, ISA
ATTN: SLCIS-IM-TL

2800 POWER MILL ROAD
ADELPHI, MD 20783-1145

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER,
BENET LABORATORIES, CCAC, U.S. ARMY TANK-AUTOMOTIVE AND ARMAMENTS COMMAND,

AMSTA-AR-CCB-O, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.




TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

NO. OF
COPIES
COMMANDER
U.S. ARMY RESEARCH OFFICE
ATTN: CHIEF, IPO 1

P.O. BOX 12211
RESEARCH TRIANGLE PARK, NC 27709-2211

DIRECTOR

U.S. NAVAL RESEARCH LABORATORY
ATTN: MATERIALS SCI & TECH DIV 1
WASHINGTON, D.C. 20375

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER,

WRIGHT LABORATORY
ARMAMENT DIRECTORATE
ATTN: WL/MNM

EGLIN AFB, FL 32542-6810

WRIGHT LABORATORY
ARMAMENT DIRECTORATE
ATTN: WL/MNMF

EGLIN AFB, FL 32542-6810

BENET LABORATORIES, CCAC, U.S. ARMY TANK-AUTOMOTIVE AND ARMAMENTS COMMAND,
AMSTA-AR-CCB-O, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.

NO. OF
COPIES




